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■ Abstract The importance of reactive metabolites in the pathogenesis of drug-
induced toxicity has been a focus of research interest since pioneering investigations
in the 1950s revealed the link between toxic metabolites and chemical carcinogen-
esis. There is now a great deal of evidence that shows that reactive metabolites are
formed from drugs known to cause hepatotoxicity, but how these toxic species initi-
ate and propagate tissue damage is still poorly understood. This review summarizes
the evidence for reactive metabolite formation from hepatotoxic drugs, such as ac-
etaminophen, tamoxifen, diclofenac, and troglitazone, and the current hypotheses of
how this leads to liver injury. Several hepatic proteins can be modified by reactive
metabolites, but this in general equates poorly with the extent of toxicity. Much more
important may be the identification of the critical proteins modified by these toxic
species and how this alters their function. It is also important to note that the toxicity of
reactive metabolites may be mediated by noncovalent binding mechanisms, which may
also have profound effects on normal liver physiology. Technological developments in
the wake of the genomic revolution now provide unprecedented power to characterize
and quantify covalent modification of individual target proteins and their functional
consequences; such information should dramatically improve our understanding of
drug-induced hepatotoxic reactions.

INTRODUCTION

Adverse drug reactions (ADRs) are significant health problems that contribute to
patient morbidity and mortality. There are many different types of ADRs, affecting
every organ system in the body. However, drug-induced liver injury is the most
frequent reason for the withdrawal of an approved drug from the market, and
it also accounts for more than 50% of cases of acute liver failure in the United
States today (1). More than 600 drugs have been associated with hepatotoxicity.
The clinical picture is diverse, even for the same drug when given to different
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patients. The manifestations range from mild, asymptomatic changes in serum
transaminases, which occur at a relatively high frequency with a number of drugs,
to fulminant hepatic failure, which although rare, is potentially life threatening
and may necessitate a liver transplant.

Most drug-induced hepatic injuries that occur in humans are unpredictable and
poorly understood. Although the asymptomatic rises in transaminases are com-
mon, the more severe forms of liver damage are fortunately rare, generally occur-
ring with a frequency between 1 in 1000 and 1 in 10,000. The patients present
with a pattern of liver injury that is consistent for each drug and may therefore
be termed idiosyncratic, a term that does not imply any particular mechanism.
Drug-induced liver toxicity mimics natural disease, and therefore lessons learned
from the study of drug-induced hepatotoxicity should not only enhance drug
safety but also provide new pharmacological strategies for the treatment of liver
disease.

The major advances in molecular toxicology over the past decade have provided
a conceptual framework for the mechanism of action of model hepatotoxins at the
chemical, molecular, biochemical, and cellular levels. In particular, we now have a
better understanding of the events that link drug metabolism and the formation of
toxic metabolites to changes in liver function and the evolution of liver pathology.
In this review, we relate recent advances in molecular toxicology to the clinical
problem of drug-induced hepatotoxicity.

HEPATOTOXICITY AND DRUG METABOLISM

The biotransformation of lipophilic compounds into water-soluble derivatives that
are more readily excreted is a physiological role of the liver. The liver receives
more than 80% of its blood flow from the gastrointestinal tract and has a high
capacity for both phase I and phase II biotransformations. Cytochrome P450
enzymes play a primary role in the metabolism of an incredibly diverse range
of foreign compounds, including therapeutic agents. Such compounds may un-
dergo concentration in the liver by various processes, including active transport
systems.

Although the major role of drug metabolism is detoxication, it can also act
as an “intoxication” process. Thus, foreign compounds can undergo biotrans-
formation to metabolites that have intrinsic chemical reactivity toward cellular
macromolecules (Figure 1). The propensity of a molecule to form such chemically
reactive metabolites—usually electrophiles—is simply a function of its chemistry,
and structural alerts are now well defined. A number of enzymes, and in partic-
ular the cytochromes P450, can generate, and in many instances release, reactive
metabolites. The versatility of P450 together with the reactivity of their oxygen in-
termediates enables them to functionalize even relatively inert substrates, leading
to the direct formation of diverse chemically reactive species. Such metabolites are
short-lived, with half-lives of generally less than one minute, and are not usually
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Figure 1 Relationship between drug metabolism and toxicity. Toxicity may accrue
through accumulation of parent drug or, via metabolic activation, through formation
of a chemically reactive metabolite, which, if not detoxified, can effect covalent mod-
ification of biological macromolecules. The identity of the target macromolecule and
the functional consequence of its modification will dictate the resulting toxicological
response.

detectable in plasma. Their intracellular formation can be inferred from endoge-
nous trapping reactions or physico-chemical techniques. Their formation may be
modulated by enzyme induction, enzyme inhibition, and gene deletion in animals.
However, none of these experimental procedures is directly applicable to man.
Hence, human exposure to chemically reactive metabolites in the liver is almost
impossible to quantify.

The concept that small organic molecules can undergo bioactivation to elec-
trophiles and free radicals and elicit toxicity by chemical modification of cellular
macromolecules has its basis in chemical carcinogenicity and the pioneering work
of the Millers (2, 3). The application of such concepts to human drug-induced hep-
atotoxicity was established through the studies of Brodie, Gillette, and Mitchell
(4, 5) on the covalent binding to hepatic proteins of toxic (over) doses of the widely
used analgesic acetaminophen.

However, the relationship between bioactivation and the occurrence of hepatic
injury is not simple. For example, many chemicals undergo bioactivation in the
liver but are not hepatotoxic. The best example is the lack of hepatotoxicity with
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therapeutic doses of acetaminophen. Tight coupling of bioactivation with bioin-
activation may be one reason for this. Many enzymic and nonenzymic pathways
of bioinactivation are present in the liver, which is perhaps the best equipped
of all the organs in the body to deal with toxins. Typical examples of bioin-
activation pathways include glutathione conjugation of quinones by glutathione
S-transferases (GSTs) and hydration of arene oxides to dihydrodiols by epoxide
hydrolases. It is only when a reactive metabolite is a poor substrate for such en-
zymes that it can escape bioinactivation and thereby damage proteins and nucleic
acids.

Moreover, covalent binding per se does not necessarily lead to drug hepato-
toxicity. The regioisomer of acetaminophen, 3-hydroxyacetanilide, becomes co-
valently bound to hepatic proteins in rodents without inducing hepatotoxicity (6).
It is therefore necessary to identify the subset of targets, i.e., covalently modified
macromolecules, that is critical to the toxicological process. Hard electrophiles
generally react with hard nucleophiles, such as functional groups in DNA and
lysine residues in proteins. Soft electrophiles react with soft nucleophiles, which
include cysteine residues in proteins and in glutathione, which has a concentration
of approximately 10 mM in the liver. Free radicals can also react with lipids and ini-
tiate lipid peroxidative chain reactions. Unfortunately, there are no simple rules to
predict the target macromolecule(s) for a particular chemically reactive metabolite
or the biological consequences of a particular modification. Furthermore, nonco-
valent interactions also play a role because covalent binding of hepatotoxins is not
indiscriminate with respect to proteins. Even within a single protein there can be
selective modification of an amino acid side-chain found repeatedly in the primary
structure. Thus, the microenvironment (pKa, hydrophobicity, etc.) of the amino
acid in the tertiary structure appears to be the crucial determinant of selective
binding, and therefore the impact of covalent binding on protein function. The
extent of binding and the biochemical role of the protein will in turn determine
the toxicological insult of drug bioactivation. The resulting pathological conse-
quences will be a balance between the rates of protein damage and the rates of
protein replacement and cellular repair.

It is therefore not surprising that irreversible chemical modification of a pro-
tein, which has a profound effect on function, is a mechanism of drug-induced
hepatotoxicity. However, it is also important to note that a number of drugs (e.g.,
penicillins, aspirin, omeprazole) rely on covalent binding to proteins for their ef-
ficacy, and thus prevention of covalent binding through chemical modification of
the compound may also inadvertently lead to loss of efficacy. Similarly, endoge-
nous compounds, such as cyclopentenone prostaglandins, are Michael acceptors,
which react with specific cysteine residues in transcription factors to elicit their
physiological effects in cell signaling (7).

The considerable task therefore facing the molecular toxicologist and drug
metabolist is to differentiate between those protein modifications that are critical
for a particular type of drug toxicity (and drug efficacy) and the “white noise” of
noncritical, background covalent binding.
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BIOACTIVATION AND HEPATOCARCINOGENESIS

The relationship between bioactivation, bioinactivation, and DNA adduct forma-
tion has been well established for a number of hepatocarcinogens. Aflatoxin, which
is a hepatocarcinogen and a hepatotoxin, is converted into an epoxide, which is
more readily detoxified by GST enzymes than by epoxide hydrolase. The balance
of these reactions explains the greater DNA damage in humans compared with
rodents because human forms of GST are less able to catalyze the conjugation
of aflatoxin than their rodent counterparts (8, 9). Transgenic knockout mice have
been used to establish the role of bioactivation by P450 (for review see 10) and
bioinactivation by GSTs (11) for a number of carcinogenic polyaromatic hydro-
carbons.

An important safety issue with respect to a therapeutic agent arose with the
discovery that tamoxifen is a genotoxic hepatocarcinogen in the rat (12). Tamoxifen
is a nonsteroidal antiestrogen used for the treatment of breast cancer (13). It has
contributed to the reduction of deaths from breast cancer in the United States and
the United Kingdom. There is now sufficient human experience to indicate that
tamoxifen does not cause hepatic tumors in women after either prophylaxis or
treatment. A consideration of the relative rates of bioactivation and bioinactivation
provides a metabolic rationale for the safety of the drug in women.

The major route of bioactivation of tamoxifen to a genotoxic metabolite is
known to be by sequential α-hydroxylation and sulphonation to a sulphate ester
that collapses to a reactive carbocation and forms DNA adducts (14). Importantly,
we observed that the corresponding glucuronide of α-hydroxytamoxifen is chemi-
cally very stable, and thus this biotransformation represents bioinactivation. There
is no glutathione conjugate formed because the carbocation is a hard electrophile.
A comparison of the relative rates of hydroxylation, sulphonation, and glucurony-
lation was performed in vitro between human and rodent enzymes. Rats had a
greater propensity for sulphonation (bioactivation), whereas human liver had a
much greater ability to effect glucuronylation (bioinactivation) (15, 16). An over-
all analysis of risk based on dose and the relative rates of metabolism suggested a
150,000-fold safety factor for the development of liver cancer from tamoxifen in
humans when compared with rats (Figure 2).

BIOACTIVATION AND HEPATOTOXINS

A number of simple chemical compounds that produce selective hepatotoxicity
after a single dose have been widely studied. These compounds are generally toxic
in all species studied and include carbon tetrachloride, bromobenzene, furosemide,
and acetaminophen. For each compound, there is compelling evidence that bioac-
tivation is essential for hepatotoxicity. The use of transgenic null mice for certain
P450 isoforms has been definitive in this regard. However, even for such sim-
ple compounds, the structure of the ultimate toxic metabolite is not known with
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Figure 2 Metabolic bioactivation of tamoxifen. Tamoxifen undergoes sequential
oxidation and sulphonation to form a carbocation that reacts covalently with DNA.

certainty. This information is essential if one is to relate global changes in gene ex-
pression, proteomics, and metabonomics in a way that can be used by the medicinal
chemist in drug design.

Acetaminophen

Acetaminophen is a major cause of drug-related morbidity and mortality in hu-
mans, producing massive hepatic necrosis after a single toxic dose. A similar
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pathological picture is observed in rodents. Toxicity is essentially dose-dependent,
but there is interindividual variability in susceptibility, with alcoholics and patients
on enzyme-inducing drugs perhaps being more susceptible. At therapeutic doses,
acetaminophen is deactivated by glucuronylation and sulphation to metabolites,
which are rapidly excreted in urine. However, a proportion of the drug undergoes
bioactivation to N-acetyl-p-benzoquinoneimine (NAPQI) by CYP2E1, CYP1A2,
and CYP3A4 (17, 18) (Figure 3).

NAPQI is rapidly quenched by a spontaneous reaction with hepatic glutathione
after a therapeutic dose of acetaminophen. After a toxic (over) dose, glutathione

Figure 3 Bioactivation of acetaminophen. Acetaminophen can undergo conversion
to the chemically reactive species N-acetyl-p-benzoquinoneimine, which can oxidize
and covalently modify proteins. The toxicological and pharmacological properties of
the molecule are a function of the redox potential of the molecule.
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depletion occurs, which is an obligatory step for covalent binding and toxicity
(19). The standard treatment for acetaminophen intoxication is N-acetylcysteine,
which replaces hepatic glutathione and prevents toxicity. N-acetylcysteine is most
beneficial if given within 16 h of the overdose. The early signs of cellular disruption
in isolated hepatocytes can be reversed by a disulphide reductant, dithiothreitol
(20, 21).

The massive chemical stress mediated by an acetaminophen overdose leads to
an immediate adaptive defense response in the hepatocyte. This involves various
mechanisms, including the nuclear translocation of redox-sensitive transcription
factors such as Nrf-2, which “sense” chemical danger and orchestrate cell defense
(Figure 4). Thus, with respect to acetaminophen, Nrf-2 genes of immediate sig-
nificance are those involved in glutathione synthesis such as γ -glutamylcysteine

Figure 4 Activation of Nrf2 in hepatocytes in response to paracetamol exposure.
Generation of NAPQI in the hepatocytes results in GSH depletion, protein adducts,
and oxygen free radical formation. Each of these contributes to the release of Nrf2
from its cytoplasmic inhibitor, Keap1, and translocation to the nucleus. In the nucleus,
Nrf2 heterodimerizes with small Maf or other proteins and activates the antioxidant
response element (ARE), resulting in enhanced transcription of a battery of genes
encoding antioxidant proteins and phase II drug metabolizing enzymes.
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synthetase (γ -GCS), GSTs, glucuronyltransferases, and heme oxygenase (22). Im-
portantly, it has been observed that nuclear translocation occurs at nontoxic doses
of acetaminophen and at time-points before overt toxicity is observed. However,
with increasing doses of acetaminophen, there is progressive dislocation of nuclear
translocation, transcription, translation, and protein activity (23) as the rate of drug
bioactivation overwhelms cell defense through the destruction of critical proteins.

THE CRITICAL PROTEIN HYPOTHESIS Since the initial discovery that covalent
binding of acetaminophen to hepatic proteins was associated with hepatotoxic-
ity, there has been a progression of techniques that have been used to identify the
protein targets. Thus, radiolabeled drugs and Western blotting enable the detection
and quantification of adduct formation, whereas more recently proteomics has
allowed the simultaneous identification of several adducted proteins. The latter
technique offers the possibility of determining the amino acids modified and the
nature of that modification. This in turn allows a molecular rationale for the change
in activity of that protein.

At least 17 liver enzymes that show a loss of activity ex vivo after administration
of a toxic dose of acetaminophen to a rodent species have now been investigated;
these are listed in Table 1. An additional 14 liver enzymes are known to be adducted
by paracetamol in vivo and in vitro but have yet to be shown to be inhibited.

It is notable that modification of proteins can occur in most intracellular com-
partments of the hepatocyte, e.g., endoplasmic reticulum (ER), cytosol, mitochon-
dria, and plasma membrane, which is an indication of the intracellular mobility of
the reactive metabolite once glutathione is depleted (Figure 5). The loss of hepa-
tocyte viability is likely to be a function of the summation and extent of inhibition
of protein activity. Thus, inhibition of γ -GCS, glyceraldehydes-3-phosphate de-
hydrogenase (GAPDH), and Ca2+/Mg2+ ATPase will severely impair hepatocyte
function by uncoupling mitochondria, depleting glutathione and ATP, and disturb-
ing Ca2+ homeostasis, which could lead to the expression of TNF and Fas receptors
on cell membranes. γ -GCS catalyses the rate-limiting step in glutathione synthesis,
the primary biochemical defense of the hepatocyte against NAPQI. GAPDH,
which, as a component of the glycolytic pathway, contributes to ATP production,
is more than 80% inhibited at 2 h after a toxic dose of acetaminophen. On the basis
of reaction with NAPQI in vitro, inhibition is thought to be due to modification of
a critical cysteine (cys-149) within the active site of the enzyme (24). The loss of
calcium homeostasis is one of the first pathological features of acetaminophen
toxicity. It is clear that as NAPQI diffuses from its site of formation, a number
of enzymes are chemically modified—usually at cysteine or lysine residues—but
there is a degree of protein selectivity and variation in amino acid modification:
Acetaminophen appears to react with lysine residues of three intraluminal ER
proteins (25). Presumably, noncovalent interactions and the microenvironment of
amino acid residues determine the precise structure of modified proteins.

The rapid inactivation of several proteins suggests that cellular failure is a con-
sequence of multiple parallel events rather than a simple cascade or signaling
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Figure 5 Levels of interaction of the chemically reactive metabolite of ac-
etaminophen, NAPQI, with cellular function. The cellular locations of specific proteins
involved in cell defense and cell damage, whose functions are known to be modified
by NAPQI following exposure to acetaminophen, are indicated.

mechanism. It is well established that one of the main events in isolated hepato-
cytes is overall energy failure (26, 27), which is accompanied by the generation of
megamitochondria that are apparently ATP-depleted and nonfunctional (28). The
execution of hepatocytes involves interplay between hepatocyte damage mediated
by chemical stress and the activation of nonparenchymal cells and the subsequent
release of various mediators. The role of Kupffer cells has been demonstrated by the
fact that mice treated with dichloromethylene diphosphonate (DMDP), which de-
pletes 99% of macrophages from the liver, were protected against acetaminophen
toxicity (29). Indeed, acetaminophen-treated rats have four- to sevenfold more
infiltrating macrophages than resident Kupffer cells (30). Furthermore, neutraliza-
tion of Fas ligand (31) and TNF (32) affords a degree of protection against the early
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apoptotic processes and the final overwhelming necrosis, which is the overriding
feature of acetaminophen’s hepatotoxicity.

Nitric oxide has a dual role in the hepatic response to acetaminophen. Nitric
oxide derived from iNOS contributes to acetaminophen-induced parenchymal cell
injury and to microvascular disturbances, whereas nitric oxide derived from consti-
tutive NOS exerts a protective role in liver microcirculation and thereby minimizes
liver injury. In this context, it is of interest to note that glutathione depletion can
lead to oxidative deactivation of nitric oxide and thus produce hypertension (33).

It has also been suggested that liver blood flow is an important determinant
of toxicity. Consistent with this, it has been demonstrated that alpha-blockers,
which mediate vasodilatation, protect against acetaminophen toxicity even when
given after bioactivation and covalent binding of the drug has occurred (L. Randle,
unpublished data).

THE ASSOCIATION BETWEEN DRUG BIOACTIVATION
AND HEPATOTOXICITY IN MAN

Acetaminophen-induced hepatic necrosis is the best-described form of injury in-
duced by reactive metabolites, but this type of toxicity is unusual in that it is caused
by a single dose as well as being clearly dose-dependent. In most instances, drug-
induced injury in man is an infrequent and variable event and a number of general
mechanisms have been proposed (1). Chemically reactive metabolites have been
proposed as being responsible for most types of drug-induced injury, but direct
evidence for the role of such metabolites is difficult to obtain because of the lack
of suitable in vitro and in vivo models.

Some drug reactions have all the clinical hallmarks of an immunological mecha-
nism, which include time of presentation, general clinical features, greatly
enhanced reaction on reexposure to the drug, and some laboratory evidence of
drug-induced immunological perturbation. In such cases, the liver alone may be
involved, or liver injury may be part of a more complex hypersensitivity syn-
drome, as has been observed for anticonvulsants. Thus, for a series of drugs, there
is chemical evidence for bioactivation, based largely on in vitro or animal studies,
and some evidence of drug-induced antibody formation or a drug-related T cell
response (Table 2). The question is whether the association between bioactivation
and an immune response is coincidental or consequential.

Halothane

Halothane is the best-studied drug with respect to immunoallergic hepatitis. A
significant proportion of patients exposed to this inhalation anesthetic develop
asymptomatic rises in transaminases. Fulminant irreversible hepatitis is a rare but
life-threatening phenomenon. Most of the patients recorded in the literature with
immunoallergic hepatitis had more than one exposure (34). Antibodies have been
detected in such patients that recognize autoantigens and neoantigens created by
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TABLE 2 Chemical and immunological basis of drug-induced immunoallergic hepatitis

Drug Bioactivation Immune response Reference

Halothane Oxidative dehalogenation Drug metabolite IgG (39, 45)
Anti-CYP2E1 IgG

Autoantibodies

Tienilic acid Thiophene sulphoxidation Anti-CYP2C9 IgG (42)

Dihydralazine ? Anti-CYP1A2 IgG (44)

Sulphamethoxazole N-hydroxylation IgG antibodies (93)
Drug and metabolite (94)

T cells

Carbamazepine Arene oxidation Drug T cell (46, 95)

Nevirapine Arene oxidation Drug T cell Unpublished data

trifluoroacetylation of hepatic proteins (Figure 6). Preincubation of halothane-
pretreated, but not of control, rabbit hepatocytes with sera from patients with
halothane-induced fulminant hepatic failure rendered the hepatocytes susceptible
to the cytotoxic effects of normal lymphocytes in vitro (35). It is thus likely that
drug-specific T cells may play a role in the pathogenesis of hepatocyte injury, but
direct evidence for this is lacking.

It is likely that the common chemical trigger for both the mild and severe
forms of hepatocyte injury is drug bioactivation to an acyl halide. Bioactivation
of halothane is substantial and is a consequence of the presence of a vulnerable
proton alpha to halide groups, which are effective leaving groups. In this sense, the
only metabolic route available to the molecule is bioactivation. There is direct and
indirect evidence for this concept. First, the detection of drug metabolite-specific
antibodies in affected patients. Second, a global evaluation of the relationship be-
tween the metabolism and toxicity of inhalation anesthetics reveals that the newer,
metabolically inert anesthetics such as enflurane and isoflurane are rarely asso-
ciated with hepatotoxicity in man. Pohl and colleagues (36–39) have identified
a number of target proteins modified by halothane; trifluoroacetylation of lysine
residues is believed to be the principal chemical modification. Precisely how such
chemical modifications trigger an immune response and what is the immunological
mechanism of cell killing is still very much a matter of debate. Animal models of
experimental autoimmune hepatitis indicate that T cells rather than immunoglob-
ulins provide the immunological trigger for cell death (40, 41). A feature of such
animal models is the minimal level of tissue injury, with protection partly afforded
by the presence of T suppressor cells. In man, therefore, the balance between the
different T cell subsets with different functions may be crucial in determining not
only individual susceptibility but also the severity of the injury.

A further clue to the mechanisms involved in such reactions was the discovery
of antibodies directed against the P450 enzymes responsible for the bioactivation
of tienilic acid, dihydralazine, and halothane (42–44). In the case of halothane,
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Figure 6 Bioactivation of halothane. Halothane is metabolized by cytochrome P450
2E1 to a chemically reactive trifluoroacetyl radical, which has been shown to covalently
modify lysine residues in a range of target proteins, including CYP2E1 itself (39).
Chemical modification of protein(s) leads to the immune response associated with
halothane hepatitis.
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autoantibody generation was extensive (45). Collectively, these data provide ev-
idence for a loss of tolerance to autologous proteins chemically modified as a
consequence of drug bioactivation. Further studies are required to examine pa-
tients with immunoallergic hepatitis for drug-specific T cells (46) and for genetic
variants in drug metabolism and immune responsiveness, which might provide the
key to understanding the idiosyncratic nature of such reactions.

Studies from our laboratories have already shown that patients with deranged
liver function as a consequence of taking carbamazepine or nevirapine have cir-
culating T cells that recognize the drug (D.J. Naisbitt, unpublished data). Thus
most of the available information is compatible with the hapten mechanism of
drug-induced immunoallergic toxicity outlined in Figure 7.

Figure 7 Proposed mechanism for the role of reactive metabolites in immunoallergic
hepatitis. The drug undergoes bioactivation in the hepatocytes leading to drug-protein
conjugate formation in the liver. The resulting modified protein is internalized by
Kupffer cells and presented to cognate T cells that recognize modified peptide and
native peptide. This in turn can lead to the generation of cytotoxic T cells and B
lymphocytes producing antibody. In theory, such an unregulated response could explain
the severe idiosyncratic hepatotoxicity associated with halothane.
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Isoniazid

Isoniazid (INH) is still the most widely used drug in the treatment of tubercu-
losis (TB) and has high activity against Mycobacterium tuberculosis, although
resistant strains have emerged. INH is used in combination with drugs such as
rifampicin and pyrazinamide to reduce the chance of inducing resistant strains of
the mycobacterium.

INH causes two major adverse reactions: hepatitis and peripheral neuropathy.
The incidence and severity of the adverse drug reactions are related to dose and
duration of therapy. Toxicity may be delayed by several weeks. A minor asymp-
tomatic increase in liver aminotransferases (less than threefold) is seen in 10%–
20% of patients within the first two months of therapy, whereas fatal hepatitis is
seen in less than 1% of patients. Mortality is greater than 10% in patients with
jaundice (47, 48). INH typically produces diffuse massive necrosis or chronic hep-
atitis. Clinical features resemble acute viral-induced hepatitis. Anorexia, fatigue,
nausea, and vomiting are the usual prodromal features, but jaundice and dark urine
may be the first evidence of injury (49). Combination therapy is a risk factor for
hepatitis, although formal studies evaluating the mechanisms of this have not been
undertaken. Interestingly, of the three anti-TB compounds, it has been suggested
that pyrazinamide is the most hepatotoxic, with a rate of hepatitis three and five
times higher than that of rifampicin and INH, respectively (50–52).

Studies in the rat (53) and rabbit (54), along with in vitro studies, indicate that
INH undergoes acetylation to give N-acetylisoniazid. This is then hydrolyzed to
acetylhydrazine, which undergoes bioactivation by P450 enzymes to give an acetyl
radical, a reactive species identified by trapping as a glutathione conjugate (53).
Precisely how such a reactive intermediate induces hepatocyte damage remains
to be elucidated, as do the reasons for the increased incidence of hepatotoxicity
when combination therapy is used. Target proteins have not been identified for the
reactive metabolite formed from INH. To date, there is no convincing clinical or
laboratory evidence to suggest an immunological mechanism.

Interestingly, bioactivation plays a role in the pharmacology of INH, with elim-
ination of nitrogen being the driving force for the formation of an isonicotinoyl
radical intermediate (Figure 8). INH can thus be considered a prodrug, which is
activated by the mycobacterial catalase-peroxidase enzyme KatG. The product
of bioactivation forms a covalent adduct with NADH, which is an inhibitor of
InhA, an enoyl-acyl carrier protein reductase that is involved in the biosynthesis
of mycolic acids present in the mycobacterium cell wall (55, 56).

Diclofenac

The nonsteroidal antiinflammatory drugs (NSAIDs) as a class have a strong
association with hepatotoxicity. Several NSAIDs have been withdrawn after ob-
taining approval for a license, the most recent being bromfenac (57). The mech-
anism of hepatotoxicity appears to be complex and multifactorial, involving both
pharmacological and metabolic mechanisms. For example, inhibition of the COX
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Figure 8 Metabolic bioactivation of isoniazid. Reactive metabolites are responsible
for the pharmacology and toxicology of isoniazid. In Mycobacterium tuberculosis,
generation of the isonicotinoyl radical leads to the formation of an adduct with NADH,
which in turn inhibits an enoyl-acyl carrier protein reductase (InhA) (53, 56).

enzymes may lead to a reduction in cytoprotective prostaglandins, whereas bioac-
tivation may occur by both oxidation and conjugation. This metabolic complexity
is illustrated with reference to diclofenac, which undergoes acyl glucuronylation
(58), acyl thiolation (59), and multiple P450-catalyzed oxidations producing two
p-benzoquinoneimines via phenols and an as yet uncharacterized intermediate—
possibly an epoxide—of mechanism-based inhibition (60–62). The relative contri-
butions of these metabolites to protein adduction, cytotoxicity, and hepatotoxicity
in vivo remains to be determined. In isolated rat hepatocytes, although the binding
of diclofenac to protein appears to derive principally from reactions of the acyl
glucuronide, the cytotoxicity has been attributed to products of oxidative path-
ways (63). However, diclofenac-protein adduct formation—and especially on the
cell surface—might be causally relevant to the expression of immune-mediated
hepatitis.
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Figure 9 Metabolic bioactivation of diclofenac. Diclofenac can form electrophilic
metabolites by either oxidation or glucuronylation. The precise role of such metabolites
in the rare hepatotoxicities associated with diclofenac remains to be elucidated (96).

Immunological and nonimmunological mechanisms have been proposed for
diclofenac toxicity. The acyl glucuronide can achieve concentrations in bile up to
5000-fold higher than those in peripheral blood because of a potent export pump
located in the canalicular membrane of hepatocytes (64). The acyl glucuronide is
protein reactive and forms covalent adducts with circulating proteins and hepatic
proteins (Figure 9). A particular target is the canalicular ectoenzyme dipeptidyl
peptidase (DPP) IV (CD26), which shows a decrease in activity following admin-
istration of diclofenac to rats (65).

Thiazolidinedione Antidiabetics

Chemically reactive metabolites have also been described for a number of drugs
that cause idiosyncratic hepatotoxicity, but for which no mechanistic studies are
available. An important example is troglitazone, a 2,4-thiazolidinedione, which
was the first of a new class of drugs for type 2 diabetes. Troglitazone was as-
sociated with a significant frequency of reversible increases in serum transami-
nases. Reports of severe and fatal liver injury finally led to the withdrawal of this
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important new drug (66). Fortunately, it could be replaced by newer and safer
2,4-thiazolidinediones (glitazones): pioglitazone and rosiglitazone (Figure 10).
The mechanism of troglitazone-induced hepatic injury is not known. The drug
undergoes oxidative bioactivation at both the chroman ring—which is unique
to troglitazone—and the thiazolidinedione ring in rats, forming several reactive
metabolites that are eliminated as thioether and thioester conjugates of glutathione
(67, 68). It is also bioactivated in human hepatocytes (69, 70) and is cytotoxic (71).
An association of troglitazone hepatotoxicity in diabetic patients with a glutathione
S-transferase double null genotype provides indirect evidence for the importance
of bioactivation and bioinactivation in its pathogenesis (72). However, the less
hepatotoxic and cytotoxic glitazones—pioglitazone and rosiglitazone—as well as
troglitazone undergo NADPH-dependent covalent binding to human microsomal
protein (73). At present, the toxicological significance of troglitazone’s metabolic
activation remains an open question; even the relative extents of the glitazones’
bioactivation in vitro is unquantified. Finally, it is important to note that the hetero-
geneous clinical picture of troglitazone hepatotoxicity has prompted the suggestion
that this may be a reflection of interindividual variation in the balance of different
mechanisms of drug toxicity as well as varying patient characteristics (74).

CONCLUSIONS AND SOLUTIONS

There is overwhelming evidence that chemically reactive metabolites derived from
simple organic molecules, including therapeutic agents, can cause a wide range of
hepatic injuries. There are short- and long-term solutions to the problem.

In the short term, the drug metabolist can determine the propensity of a novel
chemical entity to undergo bioactivation in model systems ranging from expressed
enzymes, through genetically engineered cells, to whole animals. Bioactivation can
be assessed by trapping experiments with model nucleophiles in vitro or by mea-
surement of uncharacterized covalent binding to endogenous proteins in vitro and
in vivo. The chemistry of the process needs to be defined, and the medicinal chemist
can then address the issue by seeking a metabolically stable pharmacophore to re-
place the potential toxicophore. Such an approach will minimize chemical hazard,
but cannot give any insight into biological risk in man, or in any other species
for that matter. Evans et al. (75) have provided an industrial perspective on this
topic and adopted a pragmatic approach to minimize reactive metabolite forma-
tion at an early stage in drug development. A decision tree has been designed
based on a target covalent binding value of 50 pmol drug equivalent /mg protein in
vitro and in vivo. The standard method measures covalent binding of radiolabeled
drug to hepatic microsomes. Such an approach seems to suggest that there may
be a threshold level of covalent binding, above which critical proteins necessar-
ily become damaged. Appropriate dose-ranging studies are, however, required to
validate this concept.

In the long term, we require a more fundamental understanding of the role of
chemically reactive metabolites in human hepatotoxicity. We need to know how
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Figure 10 Metabolism and toxicity of glitazones. Troglitazone, a novel antidiabetic
agent, was withdrawn because of rare but serious hepatotoxicity. Rosiglitazone and
pioglitazone are now firmly established in the treatment of diabetes. It has been estab-
lished that troglitazone undergoes bioactivation to several chemically reactive metabo-
lites. Novel test systems are required to define the possible role of such metabolites in
hepatotoxicity (97, 98).
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the ultimate hepatotoxin interferes with signaling, and the sequence of molecular
events that impair cell defense, which ultimately lead to hepatocyte destruction. It
is only when such a mechanistic framework is established that we will be in position
to understand the time-course of the toxicity, the nature of the toxicity, and the
direction that the toxicity takes in a particular patient. It is therefore imperative that
such studies begin at the clinical level, but are then translated into molecular studies
in the laboratory with the design of appropriate in vitro and in vivo model systems
to fully exploit the molecular technology now available in the post genomic era.
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